
SAP Participants: Douglas Dechow, Tech-X Corporation

Lois Curfman McInnes, Boyana Norris, ANL

Physics Collaborators: James Amundson, Panagiotis
Spentzouris, FNAL

SciDAC Math/CS Collaborators: TASCS, PERI, TOPS

Recent Progress: December 2008

Accelerator Simulation using CCA

Components (CCA/Synergia2)

Motivation

� Complexity of scientific software increases with simulation
fidelity, multi-physics coupling, and computer power

software crisis

� Tools

– Computational accelerator community: Tremendous investment in
software applications, codes written in a variety of languages,
targeting a range of computational platforms

– Common Component Architecture (CCA) component vision:

Enable the HPC community to leverage existing applications,

creating modular, reusable software components that facilitate the

combined use of historically independent codes to add new

capabilities (see www.cca-forum.org)

• Long-term Goal: Foster a component community in
computational accelerator physics, with emphasis on easily
incorporating new algorithms and performance enhancements

Approach

• Using CCA tools and specifications, prototype an accelerator
simulation from existing codes that were not originally designed to
work together

• Develop components based on codes for beam dynamics; also
incorporate external numerical libraries

– Synergia2 beam physics framework (FNAL)

– MaryLie/Impact beam physics application (LBNL/U. Maryland)

– High-performance numerical tools via TOPS (including PETSc (ANL), LBNL
numerics)

http://www.cca-forum.org

Benefits

• Key features of CCA components

– Programming language interoperability via SIDL

– Dynamic composability

– Encouragement of common interfaces

• Benefits to COMPASS

– Improved Productivity

• Reuse physics components across COMPASS project and the
accelerator community

• Leverage tools and libraries developed by experts in other
specialties (math/cs)

– Enhanced Performance

• Exploit highly optimized numerical software

• Enable adaptive method configuration and selection to better
match dynamically changing computational requirements

Initial Work:

Beam Dynamics Components

• Accelerator modelling components (collaboration
with TASCS):

– F90-based beam optics components (quadrupoles
and drifts) from the MaryLie/Impact application
(LBNL)

– C++ and F90 particle store components from the
Synergia2 framework (FNAL)

– A newly implemented C++-based space charge
solver, Sphyraena, which makes use of Synergia2,
PETSc (ANL), and FFTW.

• Component interfaces allowed us to capture and
make available only the functionality that was
desired from the existing codes.

• Reference: D. Dechow, B. Norris, and J.
Amundson, The Common Component
Architecture for Particle Accelerator
Simulations, Proceedings of HPC-
GECO/CompFrame'07, October 21-22, 2007,
Montreal, Quebec, Canada, ACM, 2007.

Prototype CCA Beam Dynamics Toolkit

Developed prototype Contractor-enabled CCA beam dynamics toolkit

• Components: interact only through well-defined interfaces

• Ports: well-defined interfaces through which components interact

– Follow a provides/uses pattern

• Frameworks: hold components while applications are assembled and executed,
control the connection of ports, provide services to components

Screenshot of Ccaffeine framework’s GUI

Provides-Uses Pattern

• FooComponent:

— Declares that it will support

a particular port by calling

addProvidesPort()

• BarComponent:

— Declares that it requires a

set of services by calling

registerUsesPort()

— Retrieves reference to port

by calling getPort()

Implemented Components

Synergia.BeamOptics: an ML/I component for obtaining transfer
map

testsp.Fquad3: a driver component for testing the
Synergia.BeamOptics; provides a go port and uses a
Synergia.BeamOpticsPort port

Synergia.BeamBunch: a Synergia2 component for managing the
particles of a beam bunch in a 6-D representation

testsp.BeamDriver: a driver component for testing
Synergia.BeamBunch; the component provides a go port and
uses a Synergia.ParticleStore port

Synergia.BeamSolver: a Synergia2 component that uses a
recently developed Synergia2 solver, Sphyraena, for solving
Poisson’s equation; this component provides a
Synergia.PoissonSolver port and uses a Synergia.ParticleStore
port

Implemented Components

(cont.)

testsp.SolverDriver: a driver component for testing the
Synergia.BeamSolver and Synergia.BeamBunch components;
the component provides a go port and uses a Syner-
gia.PoissonSolver port

Synergia.ChannelSimSolver: a Synergia2 component also using
Sphyraena; this component provides a Synergia.PoissonSolver
port and uses both a Synergia.ParticleStore port and a
Synergia.BeamOpticsPort port

testsp.ChannelSimDriver: a driver component for testing the
Synergia.BeamSolver, Synergia.BeamBunch, and
Synergia.BeamOptics components; the component provides a
go port and uses a Synergia.PoissonSolver port

testsp.ChannelDriver: a standalone driver component used for
prototyping and testing the pieces of the Synergia2 framework
that can be imported into a CCA-based framework; the
component provides a go port

Beam Dynamics: Defining Interfaces

• Refactoring Synergia2 and exploring
interface issues for common
functionalities

– Beam bunch

– Beamline

• Demonstrated interchanging CHEF and
MaryLie beamline components at the
map level, even though beamline
models themselves are very different

– Space charge

• Synergia2 can use space charge
modules from either IMPACT or
Sphraena

– Electron cloud

� Challenges

– Granularity: Overheads that apply per
particle get an extra factor of ~107

• unacceptable … use aggregation

– Parallel decomposition of fields, etc.,
must be compatible: may force coarser
granularity

electron emission

electron cloud

cloud evolution

charge deposition

Poisson solve

field calculation

kick application

charge deposition

space charge

Poisson solve

field calculation

kick application

beamline

elements

maps
propagators

reference particle

beam bunch

particles

Reference: Multiscale, Multiphysics Beam Dynamics Framework
Design and Applications, J. Amundson, D. Dechow, L. McInnes, B.
Norris, P. Spentzouris and P. Stoltz, J. Phys.: Conf. Ser. 125 (2008)
012001, available via:

http://www.iop.org/EJ/abstract /1742-6596/125/1/012001

Initial Simulations Using Synergia2

Components

• See code at pcac.fnal.gov
– FODO cell demo

– Apply space charge kick

• Exploring performance, including scalable Poisson solvers,
which are essential for beam dynamics simulations
– FFT via IMPACT

– Sphyraena-based implementations

– Possibly others developed by ComPASS participants

Ongoing and Future Work

• Immediate priorities: Critical for COMPASS component integration

– Collaborate with TASCS to address

• Babel/SIDL interlanguage capabilities with struct support, broad support of
Fortran compilers

• Ability to run on leadership class facilities (including Cray XT4, BG/P)

– Complete initial componentization of Synergia2

– Evaluate performance of original Synergia application and component variant
on Project-X and LARP simulations, with emphasis on beam dynamics
applications for space charge and wakefields

• Longer-term challenges: Collaborate with TASCS, PERI, and TOPS to
address issues in Computational Quality of Service (CQoS) for accelerator
simulations,

– How, during runtime, can we make make sound choices for reliability,
accuracy, and performance, taking into account the problem instance and
computational environment?

• Composition: select initial component implementations and configuration
parameters

• Reconfiguration: change parameters

• Substitution: change implementations

Synergia2 & CQoS

